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1. Introduction and overview

One of the most exciting discoveries in the last few years is the integrability of the maxi-

mally supersymmetric Yang-Mills theory [1 – 3] and its relation to the superstring theory

in AdS5 × S5 background [4 – 6]. An all-orders version of the Bethe Ansatz equations for

AdS/CFT, valid asymptotically, was first formulated by Beisert, Eden and Staudacher [7],

based on previous work [8 – 10]. The proposal by Beisert, Eden and Staudacher solves

the crossing symmetry conditions, formulated by Janik [11]. This proposal, interpolating

all the way from strong to weak coupling, was intensively tested. The most sophisticated

tests were performed on the so-called twist-two anomalous dimension. In the limit of large

Lorentz spin S, this quantity scales logarithmically [12 – 16]

∆ − S = f(g) ln S + . . . , (1.1)

where g is the coupling constant, related to the ’t Hooft coupling constant λ by

g2 =
λ

16π2
. (1.2)

The universal scaling function f(g) was computed perturbatively in the gauge theory

up to the fourth order. The third order result was extracted [17] from a QCD computation

by Moch, Vermaseren and Vogt [18]. The universal scaling function appears in the iterative

structure of the multigluon amplitude [19] and it was computed to the third odrer in [20]

and numerically to the fourth order, after an impressive effort [21, 22]. On the string side,

the universal scaling function was also computed for the first three non-trivial orders [23 –

26]

f(g) = 4 g − 3 log 2

π
− K

4π2

1

g
+ . . . , (1.3)

where K= β(2) is Catalan’s constant. It is remarkable that both the weak coupling and

the strong coupling results for the universal scaling function can be reproduced from the

conjectured Bethe ansatz equations. In this context, it is determined by the integral

equation, written down by Eden and Staudacher [15]

σ(u) =
1

π

∫ ∞

−∞
dv

σ(v)

(u − v)2 + 1
−
∫ ∞

−∞
dv K(u, v)

(

σ(v) − 1

4πg2

)

. (1.4)

With the integration kernel K(u, v) determined in [7], this equation is known as the Beisert,

Eden and Staudacher (BES) equation. The universal scaling function is given by the

integral of the density [27]

f(g) = 16g2

∫

σ(u) du . (1.5)

Although it is not, at least for the moment, possible to solve the equation (1.4) in a

closed form for arbitrary g, it is relatively easy to extract from it the perturbative expansion

at weak coupling [15, 7]. These coefficients of the perturbative expansion agree with the

field-theoretic results [17, 20 – 22].
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The strong coupling limit of the equation (1.4) proved to be much more difficult to

master analytically. The first results were obtained numerically [28] and they correspond

to the three coefficients in (1.3). The first coefficient in (1.3) was obtained analytically

by various methods [27, 29 – 31], while the second was obtained, although not from the

BES equation, by Casteill and Kristjansen [32] and later by Belitsky [33]. The reason the

strong coupling limit of the BES equation is so difficult to take is that the expansion of the

scattering phase in powers of 1/g is not uniform in the rapidity variable u. There are three

different regimes for u which are to be considered. The first is the plane-wave limit [34],

where |u/2g| & 1, or in terms of momenta p ∼ 1/g. The second is the so-called giant

magnon regime [35], with |u/2g| . 1 or p ∼ 1. The third regime was called [36] the near-

flat space regime, at it correspond to to u± 2g ∼ 1, or to momenta of the order p ∼ 1/
√

g.

As Maldacena and Swanson pointed out in [36], in this region the perturbative expansion

of the dressing phase is completely reorganized, compared to that in plane-wave and giant

magnon regimes. This is the reason why the attempts to to solve the BES equation order

by order in 1/g failed beyond the leading order1 .

An important step forward was made recently by Basso, Korchemsky and

Kotański [37], who succeeded to give a procedure for obtaining all orders in the strong

coupling expansion recursively. One of the important ingredients of their work was to

linearize the Bethe ansatz equations by transforming the BES equation into a set of two

equations, by exploiting the expression of the dressing kernel as a convolution of two “un-

dressed” kernels [7]. The result is a set of two coupled integral equation, for the physical

and an auxiliary density. The idea of linearization was first proposed by Kotikov and Li-

patov [27] and subsequently by Eden [38]. Basso, Korchemsky and Kotański [37] used the

Fourier representation of the BES equation, which is more adapted for numerical analysis,

as well as a number of numerically inspired hypotheses.

The present work arose as an attempt to derive the results of [37] by purely analytical

consideration. A natural way of solving the BES equation is to reformulate it as a functional

equation for the resolvent. Here, we will pursue this direction. After writing the linearized

BES equations in terms of the resolvent, it is possible to transform the integral BES

equations into a set of functional equations for the physical and auxiliary resolvents. This

procedure works for an arbitrary value of the coupling constant.2

The question whether the functional BES equations can be solved for any value of the

coupling constant is still open. What is clearly possible to do is to solve these equations

perturbatively at strong coupling, that is, by neglecting the non-perturbative corrections.

This is possible because, in the absence of non-perturbative terms, the resolvents posses

extra symmetry properties. The algorithm of solving the equations loosely follows the one

of Basso, Korchemsky and Kotański [37].

First, we find the general solution for the resolvents at strong coupling in the giant

magnons/plane-wave regimes. In these regimes the rescaled rapidity u/2g is kept finite.

1In the approaches [32, 33], which in principle treat a different limit than the BES equation, the contri-

bution from the near-flat space regime is suppressed from the beginning. This rapidity regime falls inside

the gap of the density.
2The essential steps of this procedure are already present in the paper [27] by Kotikov and Lipatov.
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The functional equations are linear and homogeneous, so that the general solution is a

linear combination of a countable set of particular solutions. Each of these functions have

a non-integrable singularity at the points u/2g = ±1. The indeterminacy in the coefficients

of the linear combination and the singularities of the individual solutions can be cured by

analyzing the solution in the near-flat space region, where the perturbation series in 1/g

is reorganized compared to the giant magnon and plane-wave regimes. In the near-flat

space regime the resolvents must have a series of integrable square root singularities in

the lower half-plane and must decrease as 1/u at infinity in the upper half-plane. Re-

markably, the condition that the solutions in the plane-wave/giant magnon and near-flat

space regimes match analytically allows to determine uniquely the resolvents in the strong

coupling limit up to non-perturbative corrections. This matching condition is equivalent

to the quantization condition by Basso, Korchemsky and Kotański [37].

We formulate a recursive procedure for computing analytically the coefficients of the

1/g expansion of the density of Bethe roots. In the plane-wave regime, |u/2g| > 1, the

density has a fourth order branch point at u/2g = ±1 at any order in 1/g.

The paper is organized as follows: in section 2 we derive the linearized equations for the

resolvents, in section 3 we transform the integral equations into functional equations and we

discuss the analyticity properties of the resolvents and in section 4 we find the perturbative

solution by imposing the required analyticity properties to the general solution.

1.1 Notations

The notations used in this paper are similar with those of our previous paper [30]. We will

denote by ǫ the inverse gauge coupling and will use a rescaled rapidity, more adapted to

the strong coupling limit:

ǫ ≡ 1

4g
, u =

uold

2g
, (1.6)

as well as the variable x(u), related to u by

u(x) ≡ 1

2

(

x +
1

x

)

, x(u) = u

(

1 +

√

1 − 1

u2

)

. (1.7)

Note the branch cut of x(u) for u ∈ [−1, 1]. In the intermediate steps we will also use the

notations

x±(u) ≡ x(u ± iǫ) . (1.8)

Sometimes it will be useful to switch to the parametrization which resolves the square root

of x(u) and which is the hyperbolic limit of the elliptic parametrization in [30]:

u = coth s , x(s) = coth
s

2
,

u + 1

u − 1
= e2s . (1.9)

The BES equation is formulated for the density function σ(u) in the limit of large spin

S ≫ 1, related to the distribution ρ(u) of Bethe roots by

ρ(u) = 8g2 log S

(

2ǫ

π
− σ(u)

)

+ O(S0) , |u| ≪ S/g. (1.10)
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2. Linearized BES equations for the resolvent

In this section, we reformulate the Beisert, Eden and Staudacher equation [15, 7], which

determines the density of Bethe roots corresponding to the twist-two operator, as a set of

two equations for the physical resolvent and an auxiliary resolvent. This is essentially the

program which was carried out by Kotikov and Lipatov [27] and by Eden [38], although they

have not explicitly identified the inverse Fourier transform of the density on the positive

half-axis as the resolvent.

2.1 The resolvent

Let us consider the density σ(u), supported on the real axis, as well as its Fourier transform3

σ(t)

σ(t) =

∫ ∞

−∞
du eituσ(u) . (2.1)

The resolvent is defined, as usually, by

Rphys(u) =

∞
∫

−∞

dv
σ(v)

u − v
. (2.2)

and it can be seen as the inverse Fourier transform of the density σ(t) on the positive

half-axis. Let us assume that u is in the upper half plane. Then we can write

Rphys(u) = −i

∫ ∞

−∞
dv

∫ ∞

0
dt eit(u−v)σ(v) (2.3)

= −i

∫ ∞

0
dt eituσ(−t) . (2.4)

The density is given by the discontinuity of the resolvent across the real axis:

σ(u) =
1

2πi
[Rphys(u − i0) − Rphys(u + i0)] (2.5)

Since the density is supported by the whole real axis, the resolvent is given by two different

analytic functions in the upper and in the lower half-planes. Due to the symmetry σ(−u) =

σ(u) we have the relation

Rphys(−u) = −Rphys(u) (2.6)

Therefore, the symmetry determines the resolvent in the lower half plane once the resolvent

in the upper half plane is known. The behavior of the resolvent at infinity is related to the

universal scaling function

Rphys(u) ∼ 1

u

∞
∫

−∞

dv σ(v) =
1

u

f(g)

16g2
. (2.7)

3Our definition of σ(t) is slightly different of that of [15] and the subsequent references.
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2.2 Linearizing the BES equation

The linearization of the BES equation is best performed on the Fourier transformed form,

although the manipulations can be done abstractly without reference to a particular rep-

resentation. In our notations, the Fourier transformed BES equation reads

(1 − e−2ǫt)σ(t) = −
∫ ∞

0

dt′

2π

(

K(t, t′) + Kd(t, t
′)
)

(σ(t′) − σ0(t
′)) . (2.8)

where σ0(t) = 4ǫδ(t). Here we use the conventions

K(t, t′) = 2πte−(t+t′)ǫ
∑

n>0

2n
Jn(t)Jn(t′)

tt′
≡ K+(t, t′) + K−(t, t′) , (2.9)

where K+ and K− contain the expansion on odd and even order Bessel functions respec-

tively, and the dressing kernel is given by the “magic formula” [7]

Kd(t, t
′) = 2

∫ ∞

0

dt′′

2π
K−(t, t′′)

1

1 − e−2ǫt′′
K+(t′′, t′) . (2.10)

Two representations of the dressing kernel in the rapidity space were given in [30] and [39].

It is convenient to introduce an operator S, diagonal in Fourier representation:

S(t) =
1

1 − e−2ǫt
. (2.11)

The equation (2.8) can be written symbolically as

−2σ = [(1 + 2SK−)(1 + 2SK+) − 1](σ − σ0) . (2.12)

Now it is possible to transform the BES equation into a pair of equations with the “main”

kernels K± appearing linearly. This can be done at the expense of introducing an auxiliary

density τ defined by

τ + σ0 ≡ −(1 + 2SK+)(σ − σ0) . (2.13)

The linear system of equations obeyed by the physical and auxiliary density σ and τ is

simply

τ + σ = −2SK+(σ − σ0) (2.14)

τ − σ = −2SK−(τ + σ0) ,

or, in Fourier representation,

(1 − e−2ǫt)(τ(t) + σ(t)) = −2

∫ ∞

0

dt′

2π
K+(t, t′) (σ − σ0)(t

′) ,

(1 − e−2ǫt)(τ(t) − σ(t)) = −2

∫ ∞

0

dt′

2π
K−(t, t′) τ(t′) . (2.15)

In the last line we have used that K−(t, 0) = 0.
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2.3 Holomorphic BES kernels

The next step is to transform back the equations (2.15) in the rapidity space. As we

mentioned above, the inverse half-space Fourier transform of the density σ(t) gives the re-

solvent Rphys(u). The latter defines a pair of functions Rup(u) and Rdown(u) = −Rup(−u),

analytic respectively in the upper and lower rapidity half-planes. Because of the symmetry

property, we are going in the following to concentrate exclusively on Rup(u). It is this func-

tion, together with its analytical continuation beyond the real axis, which will be denoted

in the following by Rphys(u).

Assume that ℑu > 0 and perform the half-space inverse Fourier transformation to the

rapidity plane,

∞
∫

0

dt

2π
eitu

∞
∫

0

dt′

2π
K(t, t′)f(t′) =

∞
∫

−∞

dv

∞
∫

0

dt

2π
eitu

∞
∫

0

dt

2π
e−it′vK(t, t′)

∞
∫

0

dt′′

2π
eit′′vf(t′′) . (2.16)

Therefore, since we intend to work only with functions defined in the upper half plane, we

can retain only half of the original kernel in rapidity space, namely

Kǫ(u, v) =

∞
∫

0

dt

2π

∞
∫

0

dt′

2π
eitu−it′vK(t, t′) . (2.17)

Here we use the superscript ǫ for the kernel in order to indicate that it depends on the

coupling constant g = 1/4ǫ. Explicitly the “holomorphic” part of the odd and the even

kernels reads

Kǫ
−(u, v) = − 1

2πi

d

du

[

ln

(

1 − 1

x+y−

)

+ ln

(

1 +
1

x+y−

)]

Kǫ
+(u, v) = − 1

2πi

d

du

[

ln

(

1 − 1

x+y−

)

− ln

(

1 +
1

x+y−

)]

. (2.18)

The dependence on ǫ in (2.18) comes only through the shifts x± = x(u± iǫ) and it will be

removed by change of variable and shift of the integration contour. The ǫ → 0 limit of the

kernels (2.18) will be denoted without superscript

K±(u, v) =
1

2πi

2

1 − x2

(

1

y − 1
x

± 1

y + 1
x

)

. (2.19)

When using these equations, one has to remember that ℑu > 0 and ℑv < 0, or

x = x(u + i0), y = y(v − i0) = 1/y(v + i0) . (2.20)

2.4 BES equations for the resolvents

For later convenience, we introduce the shifted resolvents

R(u) = −i

∞
∫

0

dt eiut eǫt σ(t) = Rphys(u − iǫ)

H(u) = −i

∞
∫

0

dt eiut ǫǫt τ(t) . (2.21)

– 7 –
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This definition is valid for ℑ[u] > 0 and the first singularity for R(u) and H(u) is situated

on the real axis. R and H can be analytically continued to ℑ[u] < 0. We will introduce

another pair of functions by

R±(u) = 1
2 [R(u) ± H(u)] (2.22)

as well as the related functions r±(u)

r±(u) = R±(u) − R±(u + 2iǫ) . (2.23)

Now we can take the inverse Fourier transform of the equations (2.15) and make the

shifts u → u − iǫ and v → v + iǫ, in order to get rid of the ǫ-dependence in the kernels

Kǫ
±(u, v). We also use that in the rapidity space the operator S is expressed in terms of

the shift operator D = e2iǫ∂u :

S−1 = 1 − D , where Df(u) = f(u + 2iǫ) . (2.24)

We obtain the equations4

R+(u) − R+(u + 2iǫ) =
4iǫ

x2 − 1
−
∫

dv K+(u, v) [R+(v + 2iǫ) + R−(v + 2iǫ)]

R−(u) − R−(u + 2iǫ) =

∫

dv K−(u, v) [R+(v + 2iǫ) − R−(v + 2iǫ)] . (2.25)

After the change of variables the integration contour for v goes along the shifted real axis

R− iǫ, but it can be placed anywhere between the branch cut [−1, 1] of the kernels K± and

the branch cut [−1− 2iǫ, 1− 2iǫ] of the resolvent R(u). We will assume that the contour is

just below the real axis. The variable u originally lies in ℑu > 0, but we can analytically

continue it to the whole rapidity plane, using that the integration kernels are holomorphic.

3. Functional equation

The kernels (2.19) look almost like Cauchy kernels, if not for the branch cut of the variables

x(u) and y(v). This suggests that we may simplify the BES equation further. This can

be done provided that we know the analytical properties of the functions the kernels act

on. In this section, we derive the analytic properties of the resolvents R±(u) and of the

functions r±(u) and translate the action of the kernel in terms of an integral on the interval

[−1, 1]. This transformation will allow to transform the integral equations into a functional

equation.

3.1 Analytic properties of the resolvents

We start with the linearized BES equations

r+(u) =
4iǫ

x2 − 1
−
∫

R−i0

dvK+(u, v) [R+(v + 2iǫ) + R−(v + 2iǫ)]

r−(u) =

∫

R−i0

dvK−(u, v) [R+(v + 2iǫ) − R−(v + 2iǫ)] (3.1)

4This way of rewriting the BES equation have been first proposed by Kotikov and Lipatov in [27].
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1−1

u

1−1

u

2

Figure 1: Left: Physical sheet for r±(u). Right: Physical sheet for R±(u).

where

K±(u, v) =
1

2πi

2

1 − x2

(

1

y − 1
x

± 1

y + 1
x

)

(3.2)

with x = x(u) and y = x(v). The variables u and v belong to the physical sheet, which

means that |x| > 1 and |y| > 1. Since the kernel becomes singular only for u in the

interval [−1, 1], and there is no other singularity when u and v are on the physical sheet,

the functions r±(u) are analytic in C\[−1, 1].

We deduce that the resolvents

R±(u) =

∞
∑

n=0

r±(u + 2inǫ) (3.3)

have a semi-infinite set of equidistant cuts as shown in figure 1. From the explicit form of

the kernels it follows that

r+(u) ∝ 1

u2
, r−(u) ∝ 1

u3
(u → ∞) . (3.4)

The large u behavior of the resolvents is R+(u) ∝ 1/u and R−(u) ∝ 1/u2 .

3.2 Analytic properties of the kernels

3.2.1 Changing the definition of the integration kernels

We will see that the integration kernels in (3.1) simplify significantly when acting on func-

tions which are analytic in the upper half plane and on the real axis. Our strategy will

be to use this simplified form and to extend it to functions that can have cuts on the real

axis. Consider the integral

+∞−i0
∫

−∞−i0

dv K±(u, v)F (v) , (3.5)

where F (v) stands either for R+(v + 2iǫ) or for R−(v + 2iǫ). The function F (u) is analytic

in the half-plane ℑu > −ǫ. We will actually need a weaker assumption, namely that the

function F (u) is analytic in the upper half plane ℑu ≥ 0 with the real axis included.

– 9 –
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We would like to place the integration contour above the real axis, since in the upper

half-plane both K± and F are analytic. Using the properties

x(v − i0) = 1/x(v + i0) , u ∈ [−1, 1]

x(v − i0) = x(v + i0) , u ∈ R\[−1, 1] (3.6)

we can place the integration contour above the real axis at the price of changing the form

of the kernel in the interval [−1, 1]. Next, since in the upper half-plane the function F is

analytic, we can deform the rest of the contour to a contour that goes along the interval

[−1, 1] in the opposite direction. Adding up the two contributions we evaluate the integral

as

K±F (u) =
2

1 − x2

1+i0
∫

−1+i0

dv

2πi
F (v)

(

−yx

y − x
± yx

y + x
− 1

y − 1
x

∓ 1

y + 1
x

)

=

1+i0
∫

−1+i0

dv

2πi
F (v)

y − 1
y

x − 1
x

(

1

v − u
∓ 1

v + u

)

. (3.7)

In the original equation (2.25), the integration contour is pinched between two cuts dis-

tanced by ǫ and the limit ǫ → 0 is not well defined. On the contary, the form (3.7) of the

integration kernel has a smooth ǫ → 0 limit. As the function F (u) is analytic on the real

axis, we can write the above integral as

K±F (u) =

1
∫

−1

dv

2π

√

1 − v2

u2 − 1

F (v + i0) ± F (−v + i0)

v − u
. (3.8)

We will use this expression as the definition of the action of the kernels on functions

which have a cut on the interval [−1, 1]. As a consequence, the necessary and sufficient

condition that the function F is annihilated by K± is

K±F = 0 ⇔ F (u + i0) ± F (−u + i0) = 0 , u ∈ [−1, 1] . (3.9)

The last condition can be written in terms of the variable x as

F (x) = ∓F (−1/x) . (3.10)

Note that the condition (3.9) does not imply the function F (u) is odd or even.

3.2.2 Projective properties of the kernels K±

Via the transformation v → −v the integral in (3.8) can be written as an integral over a

closed contour around the segment [−1, 1]:

K±F (u) =

∮

dv

2πi
F̃ (v)

√

v2 − 1

u2 − 1

1

v − u
(3.11)
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with

F̃ (u) =

{

F (u) if ℑu > 0 ,

±F (−u) if ℑu < 0 .
(3.12)

Denote by L± the linear space of even/odd functions, analytic outside the interval

[−1, 1] and decreasing at infinity faster than 1/u at infinity. For any f± ∈ L± , the kernel

K± acts as the identity operator:

K±f± = f±, f± ∈ L± . (3.13)

In particular,

K+r+ = r+, K−r− = r− . (3.14)

Now consider the result of the action of the kernel K± on an arbitrary function F (u).

Since the kernel K±(u, v) is even/odd as a function of u, is analytic outside the interval

[−1, 1], and decreases as 1/u2 at infinity, the resulting function F± = K±F belongs to

L±. As a consequence, K2
±F = K±F± = F± = K±F . We conclude that the kernel K± is

idempotent:

K2
± = K± . (3.15)

An example of a function that does not belong to L± is the constant function. The

action of K±, evaluated by expanding the contour to infinity, is

K+ · 1 = − 1/x√
u2 − 1

=
2

1 − x2
, K− · 1 = 0 . (3.16)

The first equation (3.16) means that f0(x) = 1+x2

1−x2 is a zero mode of K+. This function

satisfies the condition (3.10): f0(−1/x) = −f0(x).

3.3 The BKK transformation

We have seen that the integration kernels K± on the r.h.s. of the linearized BES equa-

tions (2.25) can be also defined by (3.8). The new definition coincides with the original

one for the functions analytic in the upper half plane and on the real axis. From now on

we will adopt the (3.8) of the integration kernels.

The linearized BES equations (2.25) considerably simplify when written in terms of

the functions Γ+ and Γ− defined by5

Γ+(u) + Γ−(u) ≡ R+(u) + R−(u + 2iǫ) + 2iǫ

Γ+(u) − Γ−(u) ≡ R−(u) − R+(u + 2iǫ) + 2iǫ . (3.17)

Indeed, with the help of the identities (3.16) and (3.14) we write the linearized BES equa-

tions (2.25) as

K+(Γ+ + Γ−) = 0,

K−(Γ+ − Γ−) = 0 . (3.18)

5This transformation corresponds to the one given by eq. (6) in [37].
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Therefore the solution of the BES equation is a linear combination of the zero modes of

the operators K±.

3.4 From integral to functional equations

Now we can reformulate the homogeneous integral equations (3.18) as a pair of functional

equations for Γ+ and Γ−. According to (3.9) or (3.10), these equations imply the following

boundary conditions on the upper edge of the cut [−1, 1],

Γ+(u + i0) + Γ−(−u + i0) = 0, u ∈ [−1, 1] , (3.19)

or, in terms of the variable x,

Γ+(−1/x) = −Γ−(x) . (3.20)

The last equation should hold on the arc |x| = 1,ℑx > 0.

Hence the solution of the BES equation must be among the solutions of the functional

relation. Note that this equation is exact in the sense that in the derivation we did not

assumed that ǫ is small.

Of course this relation has a huge set of solutions. The physical solution is distinguished

by imposing its analyticity properties in the vicinity of the singular points u → ∞ and

u = ±1. The extra conditions that single out the physical solution are formulated in terms

of the original resolvents R± = 1
2(R±H), or equally the functions r±(u) defined by (2.23).

Namely, the functions r± must be analytic everywhere outside the cut [−1, 1], where they

have square-root singularities, and behave at infinity according to (3.4). This conditions

determine the analytic properties of Γ±, which are related to r± by

Γ−(u) = 1
2r+(u) − 1

2r−(u) +

∞
∑

n=1

r+(u + 2inǫ) , (3.21)

Γ+(u) = 2iǫ + 1
2r+(u) + 1

2r−(u) +
∞
∑

n=1

r−(u + 2inǫ) . (3.22)

Since the functions r± have a square root cut along the interval [−1, 1] of the physical

sheet, all singularities of the functions Γ± are of square root type.

4. Perturbative solution at strong coupling

In this section we obtain the perturbative solution for the resolvent. First we consider

the limit ǫ → 0 with u fixed. This limit corresponds to the plane waves (PW) or giant

magnons (GM) regimes, depending on the interval where the rapidity takes its values (figure

2). The distribution of Bethe roots in the PW and the GM regimes is given by two different

analytical expressions, but for the resolvent they are related by analytical continuation.

It happens that in the strong coupling limit, and in all orders in ǫ, the intricate

cut structure of the resolvent and the related functions can be replaced by a single cut

u ∈ [−1, 1], but with fourth order instead of second order branch points at u = ±1.
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Figure 2: The physical density ρ(u) = 2ǫ/π − σ(u) in the strong coupling limit and the three

regimes: plane waves (PW) for u < −1 and u > 1, giant magnons (GM) for −1 < u < 1, and near

flat space (NFS) in the vicinity of the points u = ±1.

Furthermore, an important simplification stems from the fact that in the PW/GM regime

the combinations Γ±(u) have definite parity,

Γ±(−u) = ±Γ±(u) . (4.1)

This will allow us to write the general solution of the linearized BES equation.

Since the equations are homogeneous, the general solution is a linear combination of

all particular solutions with arbitrary coefficients cn, which are functions of the coupling

constant. The behavior of the resolvent at u → ∞ gives one linear constraint on the

coefficient functions cn(ǫ), which is not sufficient to determine them.

The rest of the information is supplied by the conditions on the analytic propertirs of

the solution in the vicinity of the singular points u = ±1. For this purpose we blow up the

vicinity of the the two singular points so that the cut structure of the resolvent reappears.

Instead of keeping u fixed, we take the limit ǫ → 0 either with z = (u − 1)/2ǫ fixed or

with z̄ = −(u + 1)/2ǫ fixed. This strong coupling limit corresponds to the near flat space

(NFS) regime [36]. Then we compare the power series expansion at z = 0, which follows

from the analytic structure of the exact solution, with the expansion at z = ∞, which is

determined by the perturbative solution in the PW/GM regime. The requirement that the

two expansions match with each other is sufficient to determine both of them, order by

order in ǫ. Technically it is more advantageous to compare the inverse Laplace transforms

for which the shift operator D becomes diagonal. A recurrence procedure, analogous to

that of [37], allows to obtain analytically the density of Bethe roots in any order in ǫ, both

in the PW/GM and NFS regimes. We check that the result of [37] for the universal scaling

function is correctly reproduced.

4.1 General form of the solution in the PW/GM regime

Let us first prove the symmetry property (4.1). For that we use the expression of Γ± in

terms of the functions of definite parity r±(u) = ±r±(−u), given by (3.21) and (3.22). We

– 13 –
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observe that the combinations

Γ±(u) ∓ Γ±(−u) =
∑

n∈Z

r∓(u + 2inǫ) (4.2)

are periodic functions with period 2iǫ. From here and from the fact that r±(u) ∼ 1/u2 at

infinity it follows that the r.h.s. (4.2) vanishes in the limit ǫ → 0 up to non-perturbative

terms. To see that we perform Poisson resummation. Assuming that ℜu > 1, we have

∞
∑

n=−∞

r±(u + 2inǫ) =
1

ǫ

∞
∑

n=1

e−πnu/ǫ

∮

dv

2πi
eπnv/ǫr±(v) , (4.3)

where the integration contour closes around the physical cut [−1, 1] of r±. The series in

e−πnu/ǫ is rapidly convergent when u > 1 and diverges at u = 1. When ℜu < −1 we get

a similar expansion, but the opposite sign in the exponents. In both cases the result is

exponentially small except at the points u = ±1.

Therefore, if we neglect these non-perturbative corrections, the solution should have

the additional symmetry (4.1). Then the functional equation (3.19) can be replaced by a

simpler one,

Γ+(u + i0) = +Γ−(u − i0)

Γ+(u − i0) = −Γ−(u + i0) . (4.4)

We remind that these equations are valid on the cut, where u ∈ [−1, 1]. From here it follows

that Γ± are obtained as different branches of the same meromorphic function, defined on

a four-sheet Riemann surface.

In terms of the global parameter of the Riemann surface, s, the functional equations

get the form of periodic conditions

Γ±(s ± iπ) = ±Γ∓(s) . (4.5)

It is convenient to work with the combinations

G± = Γ+ ± iΓ− , (4.6)

for which (4.1) and (4.5) take the form

G±(−s) = G∓(s) , G±(s + iπ) = ±iG±(s) . (4.7)

We can represent the general solution in the form of the series:

G±(s) = 2iǫ
∑

n∈Z

cn(ǫ) e±(2n+1/2)s

= 2iǫ
∑

n∈Z

cn(ǫ)

(

u + 1

u − 1

)±n± 1

4

. (4.8)

– 14 –



J
H
E
P
0
8
(
2
0
0
8
)
1
0
1

We will first obtain the general form of the solution in the PW/GM regime. In this

regime the branch points condense into continuous lines starting at the points u = ±1 and

the resolvents are described, as we will see later, by meromorphic functions with a single

pair of branch points at u = ±1.

The perturbative solution (4.8) is valid in the limit where the distance between the

subsequent branch points vanishes and the infinite sequence of simple branch points starting

at u = ±1 produces a fourth order branch singularity at u = ±1.

The solution has three singular points, u = 1, u = −1 and u → ∞. As usual in such

kind of problems, the coefficients functions cn(ǫ) in the series (4.8) will be evaluated by

matching with the asymptotic behavior of the solution at the singular points.

4.1.1 The density in the GM regime

The general form of the solution given by (4.8) is sufficient to determine perturbatively the

density in the giant magnon regime. Indeed, inspecting each of the terms, one can verify

that the value of the resolvent on the interval −1 < u < 1, and therefore the density, is

constant and is given by the leading order.

This fact is actually a direct consequence of the equations (4.5) and the symmetry (4.1).

Indeed, using the anti-symmetry of the resolvent Rphys, we can express the fluctuation

density in terms of the values of the resolvent above the real axis:

σ(u) = − 1

2πi
[Rphys(u + i0) + Rphys(−u + i0)] (4.9)

= − 1

2πi
[R(u + iǫ) + R(−u + iǫ)] . (4.10)

Further, by the definition (3.17), the resolvent Rphys is expressed in terms of Γ± as

Rphys = −2iǫ +
2

D + D−1

(

D
1

2 Γ− + D− 1

2 Γ+

)

(ℑu > 0)

where D is the shift operator defined by (2.24). Applying the functional equation (4.4), we

see that all the terms on the r.h.s. of (4.9) except the constant term cancel and therefore

to all orders in ǫ

σ(u) = 2ǫ/π, u ∈ [−1, 1] . (4.11)

This means the distribution of Bethe roots has a gap on the interval [−1, 1]. The physical

density (1.10), which gives the distribution of Bethe roots, vanishes to all orders in ǫ in the

GM regime.

4.1.2 Expansion at u = ±1 and a scaling condition for the coefficients

Let us examine the behavior of the solution (4.8) near the singular points u = ±1. We

mentioned that the strong coupling limit is not uniform in u. The strong coupling solution

has different properties in the limit considered above,

ǫ → 0 with u fixed (PW/GM), (4.12)
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Figure 3: Physical sheet for R±(u) in the NFS limit.

and the limit

ǫ → 0 with
u2 − 1

ǫ
fixed (NFS) . (4.13)

The singular behavior at u = ±1 in the PW/GM limit is an artifact of the rescaled

rapidity (1.6). If we take the NFS limit (4.13), the solution for the density must be

integrable at u = ±1. It is obvious that the strong coupling expansions in the two limits

do not match since the solution (4.8) gives non-integer powers of ǫ when considered near

u = ±1.

Our analysis of the analytical properties of the solution allows us to determine its

general form near u = ±1. The conditions that it goes smoothly into the solution (4.8)

obtained for the rest of the complex plane will be used in the next section to fix the

coefficients cn.

The complex variables relevant for the vicinity of the points u = 1 and u = −1 are

z =
u − 1

2ǫ
, z̄ = −u + 1

2ǫ
. (4.14)

The variable z coincides, up to a shift by 2g, with the original (before rescaling by 2g)

rapidity in the BES equations.

In the NFS limit the cuts become semi-infinite, with the branchpoints placed at at

z = 0,−i,−2i, . . . , as shown in figure 3. The functions r±(z) have by construction an

integrable square root singularity at z = 0. Therefore they can be expanded at small z as

r±(z) =
∑

n≥0

b±n (ǫ) zn−1/2 +
∑

n≥0

d±n (ǫ) zn ( |z| < 1 ). (4.15)

The compatibility of the expansions (4.15) and (4.8) imposes strong restrictions on

the coefficient functions cn(ǫ). In particular, each term of the expansion (4.8) must have a

non-singular limit ǫ → 0 when expressed in terms of the variable z or z̄. This means that

the coefficients cn(ǫ) must scale as ǫ|n|, so that their Taylor series have the form

cn(ǫ) = ǫ|n| αn(ǫ), αn(ǫ) =

∞
∑

p=0

αn,p ǫp (n ∈ Z) . (4.16)
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We arrive at the following expression of the general solution in terms of the shifted rapidity

variable z:

G±(z) = 2iǫ
∑

n∈Z

ǫ|n| αn(ǫ)

(

1 + ǫz

ǫz

)±n± 1

4

. (4.17)

The strong coupling expansion of G± with z kept fixed is different than the expansion

of the solution with u fixed, (4.8). In particular, it contains fractional powers of ǫ. The

resolution of this paradox is in the non-uniformity of the strong coupling expansion with

respect to the rapidity variable u. Near the singular points u = ±1 the strong coupling

expansion should be performed according to the prescription (4.13) and not (4.12). The

series (4.17) should be understood as an expansion at large z, possibly asymptotic, of the

true solution, whose small z expansion is given by (4.15). The compatibility of (4.17)

and (4.15) is studied more easily for the inverse Laplace transforms. This will be done in

the next section where we will see that demanding that the two series are compatible fixes

uniquely the coefficients of both of them.

4.1.3 Expansion at u = ∞ and universal scaling function

By construction, the solution (4.8) expands at infinity as

G±(u) =
∑

n≥0

W±
n

un
(4.18)

Comparing the series with the large u asymptotics (2.7) of the physical resolvent

Rphys = −2iǫ +

√
D

1 + D2
[(1 − iD)G+ + (1 + iD)G−] , (4.19)

we fix the first two coefficients 1
2(W+

0 + W−
0 ) = 2iǫ and 1

2(W+
1 + W−

1 ) = f(g)/16g2. This

yields a constraint for the expansion coefficients,

1 =
∑

n∈Z

cn(ǫ) ≡
∑

n∈Z

ǫ|n| αn(ǫ) , (4.20)

and the expression of the universal scaling function f(g) in terms of cn:

f(g) =
1

ǫ

∑

n∈Z

(4n + 1)cn =
1

ǫ
+

1

ǫ

∑

n 6=0

4ncn

=
1

ǫ
+ 4

∑

n 6=0

ǫ|n|−1 n αn(ǫ) . (4.21)

4.1.4 The leading order in the PW/GM limit

It follows from the scaling (4.16) that the solution at the leading order is given by the

n = 0 term of the series

G±(s) = 2iǫ

(

u + 1

u − 1

)± 1

4

. (4.22)
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The constraint (4.20) gives c0(0) = 1 and the universal scaling is given by the n = 0 term

in (4.21):

f(g) =
1

ǫ
= 4g . (4.23)

Written for the resolvent and in terms of the variable x(u), the leading order solu-

tion (4.22) is

Rǫ=0(u) = −2iǫ

(

1 − 1
√

1 − 1/x2
+ i

1/x
√

1 − 1/x2

)

. (4.24)

The density σ(u), related to the resolvent by (2.5), agrees with the AABEK solution [29, 30].

4.2 Inverse Laplace transform of the solution

The relation (4.2) involves the shift operator and therefore looks simpler for the Fourier

transformed quantities. However, in order to be able to exploit the analytic properties

of the general solution we perform instead an inverse Laplace transformation. Since the

functions g± and G± are analytic for ℜz > 0, we can define the Laplace transformation

and its inverse

f(z) =

∫ ∞

0
dℓ e−zℓ f̃(ℓ) f̃(ℓ) =

1

2πi

∫

iR+0
dz ezℓ f(z) . (4.25)

Similarly we can define the inverse Laplace transformation for the variable z̄ having as the

origin the left branch point.

Introduce, similarly to (4.6), the linear combinations

g± = r+ ∓ ir− . (4.26)

Then from (3.21) it follows that the functions g±(z) are related to G± to by

g± =
1 ± i

D ∓ i
(D − 1)G± , (4.27)

where D = ei∂z is the shift operator defined in (2.24). For the inverse Laplace images g̃±
and G̃± this relation takes the form

g̃±(ℓ) =

√
2 sin( ℓ

2)

sin( ℓ
2 ± π

4 )
G̃±(ℓ) . (4.28)

Our aim is to use the relation (4.28) to investigate the compatibility of the general

solution (4.8) with the expansion (4.15) at z = 0, which in the ℓ-space becomes expansion

at ℓ → ∞:

g̃±(ℓ) = ℓ−1/2
∑

n≥0

g̃±n ℓ−n +
∑

n≥0

h̃±
n ℓ−n−1 . (4.29)

It follows from the analytic properties of the resolvents in the rapidity space that, in the

NFS limit, g̃±(ℓ) are analytic everywhere except for the negative real axis, while G̃±(ℓ)
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are analytic everywhere on the positive real axis. We sketch the proof in appendix A.

The explicit expression for the inverse Laplace transform of (4.17) is a series of confluent

hypergeometric functions of the first kind

G̃±(ℓ) = ±2i
∑

n∈Z

ǫ|n|αn(ǫ)
(

n + 1
4

)

1F1

(

1 ∓ 1
4 ∓ n; 2;−ℓ/ǫ

)

. (4.30)

The PW/GM corresponds to keeping ζ ≡ ℓ/ǫ finite when ǫ → 0 while the NFS regime

is obtained when keeping ℓ fixed. In the NFS limit we expand in ǫ with ℓ fixed. Therefore,

in order to compare with (4.29), we are going to use the asymptotic expansion the limit

ℓ/ǫ → ∞, where the solution has an essential singularity:

1F1 (a; 2;−ℓ/ǫ) ∝ (ℓ/ǫ)−a
2F0 (a, a − 1; ; ǫ/ℓ) /Γ(2 − a) (4.31)

+e−ℓ/ǫ (−ℓ/ǫ)a−2
2F0 (1 − a, 2 − a; ; ǫ/ℓ) /Γ(a) .

The asymptotic expansion of the inverse Laplace image of the solution in this limit is

evaluated using by (4.31). As far as we interested in the perturbative solution, we can

neglect the second exponentially small term in (4.31) and write

G̃±(ℓ) = 2i
∑

n∈Z

ǫ|n|αn(ǫ)
(ǫ/ℓ)1∓

1

4
∓n

Γ(±1
4 ± n)

2F0

(

1 ∓ 1
4 ∓ n,∓1

4 ∓ n; ; ǫ/ℓ
)

. (4.32)

In the leading order in ǫ

G̃±(ℓ) = 2i(ǫ/ℓ)1∓
1

4

(

∞
∑

n=0

α±n,0

Γ(n ± 1
4)

ℓn + O(ǫ)

)

. (4.33)

We see that even in the leading order the resolvents scale in the NFS regime as fractional

powers of ǫ and are linked to the whole perturbative series in the PW/GM regime. In the

leading order the sum on the r.h.s. of (4.33) contains only non-negative powers of ℓ, but in

the next orders in ǫ more and more negative powers of ℓ will appear.

Now we represent, as in [37], the ratio of the sine functions in (4.28) as

sin( ℓ
2)

sin( ℓ
2 ± π

4 )
=

S±(ℓ)

T±(ℓ)
, (4.34)

where S and T represent ratios of Gamma functions:

S±(ℓ) = ±Γ(1
2 + ℓ

2π ∓ 1
4)

Γ( ℓ
2π )

, T±(ℓ) =
Γ(1 − ℓ

2π )

Γ(1
2 − ℓ

2π ± 1
4)

. (4.35)

If we rewrite the equation (4.28) as

G̃±(ℓ)

T±(ℓ)
=

1√
2

g̃±(ℓ)

S±(ℓ)
, (4.36)

then the l.h.s. is analytic everywhere except the negative real axis, while the r.h.s. is analytic

everywhere except the positive real axis. As a consequence, neither of the sides has poles
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and the only singularities can be branch points at ℓ = 0 and ℓ = ∞. This means, in

particular, that the expansion of the r.h.s. as a power series at ℓ = ∞ coincides with the

expansion of the l.h.s. at ℓ = 0.

To evaluate the coefficients of the two power series we need to expand S± at ℓ = +∞
and T± at ℓ = 0,

S±(ℓ) = ± (ℓ/2π)
1

2
∓ 1

4

(

1 +

∞
∑

n=1

S±
n ℓ−n

)

, (4.37)

T±(ℓ) =
1

Γ
(

1
2 ± 1

4

)

(

1 +
∞
∑

n=1

T±
n ℓn

)

. (4.38)

As it should, the series expansion of the l.h.s. of (4.36) at ℓ = 0 contains exactly the same

fractional powers as that for the r.h.s. at ℓ = ∞. To get rid of these fractional powers, we

multiply both sides of (4.36) by (ℓ/ǫ)1∓1/4 and write

G̃±(ℓ)

T̃±(ℓ)
(ℓ/ǫ)1∓

1

4 =
∑

n∈Z

C±
n (ǫ) ℓ−n , (4.39)

where the coefficients C±
n (ǫ) should be understood as formal series in ǫ,

C±
n (ǫ) =

∞
∑

p=0

C±
n,p ǫp . (4.40)

From (4.29), (4.37) and the relation (4.36) we deduce that the coefficients in front of the

non-negative powers of ℓ vanish,

C±
n (ǫ) = 0 for n = −1,−2, . . . . (4.41)

Solving these contraints (4.20) and (4.41) order by order in ǫ one can evaluate recursively

the Taylor coefficients α±
n of the series (4.16). The recurrence procedure is possible because

at each order in ǫ the sum on the r.h.s. of (4.39) contains only a finite number of negative

powers of ℓ.

We have learned that the general solution of the BES equation in the NFS limit is of

the form

G̃±(ℓ) = (ℓ/ǫ)−1± 1

4 T±(ℓ)
∑

n≥0

C±
n (ǫ) ℓ−n , (4.42)

g̃±(ℓ) =
√

2 (ℓ/ǫ)−1± 1

4 S±(ℓ)
∑

n≥0

C±
n (ǫ) ℓ−n , (4.43)

with computable coefficient functions given by the formal Taylor series (4.40). Comparing

the expansions of (4.32) and (4.42) at each order in ǫ and imposing the condition (4.20)

we can evaluate both sets of coefficients αn,p and C±
n,p. We show below how the procedure

works for the leading order.
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4.2.1 The leading order in the NFS limit

In the leading order in ǫ the series expansion of G̃± at ℓ = 0, given by (4.33), contains only

non-negative powers in ℓ. Therefore the sum on the r.h.s. of (4.39) contains only the term

with n = 0, and we have

(ℓ/ǫ)1∓
1

4 G̃±(ℓ) = 2i
∞
∑

n=0

α±n,0

Γ(n ± 1
4)

ℓn = T±(ℓ)C±
0,0 . (4.44)

From the constraint (4.20), which in the leading order gives α0,0 = 1, we evaluate

C+
0,0 = 2i

Γ(3
4)

Γ(1
4)

, C−
0,0 = 2i

Γ(1
4 )

Γ(−1
4)

. (4.45)

For the other coefficients we find

α±n,0 =
Γ(n ± 1

4)

Γ(±1
4)

T±
n , (4.46)

where T±
n are the coefficients in the expansion (4.38),

T+
1 =

π − 6 log 2

4π
,

T−
1 = −π + 6 log 2

4π
,

T+
2 =

96K − 7π2 − 36π log 2 + 108(log 2)2

96π2
,

T−
2 =

96K + 7π2 − 36π log 2 − 108(log 2)2

64π2
, (4.47)

. . . (4.48)

4.2.2 The universal scaling function

There is no difficulty to carry out the procedure for the higher orders in ǫ. The only

diffference will be that the expansion (4.33) and therefore the r.h.s. of (4.44) will contain

some negative powers of ℓ. We do not go into details because the procedure is technically

identical as the one formulated in [37]. The lowest orders for αn(ǫ) are:

α0(ǫ) = 1 − 1

8
ǫ + . . . , (4.49)

α1(ǫ) =
π − 6 log 2

16π
+

−96K + (7π − 12 log 2)(π + 6 log 2)

128π2
ǫ + . . . , (4.50)

α−1(ǫ) =
π + 6 log(2)

16π
+

−96K − 7π2 + 54π log 2 + 216(log 2)2

384π2
ǫ + . . . , (4.51)

α2(ǫ) =
5
(

96K − 7π2 − 36π log 2 + 108(log 2)2
)

1536π2
+ . . . , (4.52)

α−2(ǫ) =
96K + 7π2 − 36π log 2 − 108(log 2)2

512π2
+ . . . . (4.53)

(4.54)
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From here we reproduce the result of [37] for the universal scaling function,

f(ǫ) =
1

ǫ
+ 4

∞
∑

n=1

ǫ|n|−1n αn(ǫ) (4.55)

=
1

ǫ
− 3 log 2

π
− K

π2
ǫ + . . . . (4.56)

5. Conclusion

We have reformulated the Beisert, Eden and Staudacher equation in terms of a functional

equation obeyed by the resolvent. A similar approach was attempted, although not fully

exploited, by Kotikov and Lipatov [27]. As shown recently by Basso, Korchemsky and

Kotański [37], in the strong coupling perturbative regime it is possible to find the general

solution as a linear combination of a set of particular functions. This is possible because, in

the absence of non-perturbative terms, the resolvent possesses extra symmetries. We have

shown that the “quantization condition” of [37], which allows to fix the coefficients of the

linear combination order by order in the inverse coupling constant ǫ can be understood as

an analyticity condition on the resolvent. The condition that the resolvent has an integrable

singularity of the square root type at the points u = ±1, together with the conditions on

the behavior at infinity of the resolvent are sufficient to fix the solution recursively order

by order in ǫ.

Although we have not explicitly investigated the non-perturbative corrections, their

source is clearly identified at the level of the resolvent. This object possesses a sequence of

self-repeating cuts situated at a distance 2ǫ of one another. When ǫ → 0, the cuts condense

and we are left with a single cut plus a non-perturbative term. We leave the investigation

of the functional BES equation for a future work.

One of the points of technical importance in the work of [37] and in our work was to

transform the BES equation into a set of two equations with the so-called undressed kernel

appearing linearly. In order to perform this transformation we are led to introduce an

auxiliary density. It would be interesting to know whether such a linearization is possible

for the general Bethe ansatz equations for N = 4 SYM, and if the auxiliary density can

be given a physical meaning. Suggestions about the possibility that the dressed kernel

originates from the elimination of an auxiliary set of Bethe roots have been made in [40, 41].

It would be interesting to check if the same method can be applied for the integral

equations corresponding to other sectors of the N = 4 gauge theory, as well as for the

other limits in the sl(2) sector. In particular, it would be interesting to try to reproduce

the new universal scaling function predicted in [16] and [42] and computed by Roiban and

Tseytlin [43] in the so-called slow long string limit.
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A. Analytical structure of g̃± and G̃±

The inverse Laplace transform f̃(ℓ), originally defined by (4.25) for ℓ > 0, can be an-

alytically continued for complex values of ℓ by rotating the integration contour so that

asymtotically ℜ(zℓ) = 0 at large z.

The functions g±(z) have one second-order branch point at z = 0 on the physical sheet

and an infinite sequence of equidistant branch points z ∈ iZ on the second sheet (figure 4,

left). We assume that we are in the NFS limit in which the left endpoints of the branch cuts

are sent to −∞. We analytically continue g̃±(ℓ) beginning from ℓ real positive by changing

the phase of ℓ clockwise. The contour of integration in the definition of the inverse Laplace

transform will correspondingly rotate counterclockwise. For ℓ ∈ −iR+, the integration

contour will lie along the real axis and above the cut of g±(z). We can further decrease

the phase of ℓ by rotationg the contour so that half of it passes in the lower sheets of the

Riemann surface. The procedure can be continued without encountering any singularity

until the phase of ℓ is rotated by π

ℓ → eiπℓ = −ℓ . (A.1)
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At this point, the integration contour goes again on the imaginary axis, with the lower

half now approaching a sequence of branch points on the lower sheets. Since the contour

cannot be moved further, we deduce that g̃±(ℓ) have singularities on the negative real axis.

The functions G±(z) have a sequence of branch points on the negative imaginary axis

on the physical sheet (figure 4, right). Since G± do not decrease sufficiently fast at infinity,

the inverse Laplace transform does not exist for ℓ > 0. However if we rotate slightly the

contour counterclockwise, as is shown in figure 5, the integral (4.25) starts to converge.

In particular, it is well defined on the negative real axis, when ℓ → eiπℓ. After rotating

the contour by angle π, half of it passes on the second sheet, where there are no branch

points below the real axis. Therefore we can continue rotating the integration contour

until ℓ → ǫ2iπℓ, when we encounter the branch points on the second sheet, which are on

the positive imaginary axis. The inverse Laplace transform G̃±(ℓ) is therefore well defined

for ℓ < 0 and the singularities only occur for ℓ on the positive real axis.

B. Relation with the BKK conventions

The functions used in the present paper and those used in the paper by Basso, Korchemsky

and Kotański [37] are related as follows:

Xhere(u) = −i

∞
∫

0

dteituYBKK(t) ,

with

Xhere(u) YBKK(t)

r+(u) γ−(t)

r−(u) γ+(t)

Γ+(u) − 2iǫ 1
2Γ−(t)

Γ−(u) −1
2Γ+(t)

References

[1] J.A. Minahan and K. Zarembo, The Bethe-ansatz for N = 4 super Yang-Mills, JHEP 03

(2003) 013 [hep-th/0212208].

[2] N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B

670 (2003) 439 [hep-th/0307042].

[3] N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super

Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060].

[4] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[5] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109].

[6] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

– 24 –

http://jhep.sissa.it/stdsearch?paper=03%282003%29013
http://jhep.sissa.it/stdsearch?paper=03%282003%29013
http://arxiv.org/abs/hep-th/0212208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB670%2C439
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB670%2C439
http://arxiv.org/abs/hep-th/0307042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB664%2C131
http://arxiv.org/abs/hep-th/0303060
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2C38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB428%2C105
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150


J
H
E
P
0
8
(
2
0
0
8
)
1
0
1

[7] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech.

(2007) P01021 [hep-th/0610251].

[8] G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10

(2004) 016 [hep-th/0406256].

[9] R. Hernandez and E. Lopez, Quantum corrections to the string Bethe ansatz, JHEP 07

(2006) 004 [hep-th/0603204].

[10] N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for AdS5 × S5 strings,

JHEP 11 (2006) 070 [hep-th/0609044].

[11] R.A. Janik, The AdS5 × S5 superstring worldsheet S-matrix and crossing symmetry, Phys.

Rev. D 73 (2006) 086006 [hep-th/0603038].

[12] G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov evolution kernels of parton

distributions, Mod. Phys. Lett. A 4 (1989) 1257.

[13] G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of

Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281].

[14] A.V. Belitsky, A.S. Gorsky and G.P. Korchemsky, Logarithmic scaling in gauge/string

correspondence, Nucl. Phys. B 748 (2006) 24 [hep-th/0601112].

[15] B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech. (2006) P11014

[hep-th/0603157].

[16] L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007)

019 [arXiv:0708.0672].

[17] A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three-loop universal

anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Nucl. Phys.

B 661 (2003) 19 [Erratum ibid. B 685 (2004) 405] [Erratum ibid. B 632 (2006) 754]

[hep-th/0404092].

[18] S. Moch, J.A.M. Vermaseren and A. Vogt, The three-loop splitting functions in QCD: the

non-singlet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192].

[19] C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally

supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040].

[20] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally

supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001

[hep-th/0505205].

[21] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar

amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory,

Phys. Rev. D 75 (2007) 085010 [hep-th/0610248].

[22] F. Cachazo, M. Spradlin and A. Volovich, Four-loop cusp anomalous dimension from

obstructions, Phys. Rev. D 75 (2007) 105011 [hep-th/0612309].

[23] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semi-classical limit of the gauge/string

correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051].

[24] S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in AdS5 × S5,

JHEP 06 (2002) 007 [hep-th/0204226].

– 25 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0701%2CP021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0701%2CP021
http://arxiv.org/abs/hep-th/0610251
http://jhep.sissa.it/stdsearch?paper=10%282004%29016
http://jhep.sissa.it/stdsearch?paper=10%282004%29016
http://arxiv.org/abs/hep-th/0406256
http://jhep.sissa.it/stdsearch?paper=07%282006%29004
http://jhep.sissa.it/stdsearch?paper=07%282006%29004
http://arxiv.org/abs/hep-th/0603204
http://jhep.sissa.it/stdsearch?paper=11%282006%29070
http://arxiv.org/abs/hep-th/0609044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C086006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C086006
http://arxiv.org/abs/hep-th/0603038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA4%2C1257
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB406%2C225
http://arxiv.org/abs/hep-ph/9210281
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB748%2C24
http://arxiv.org/abs/hep-th/0601112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTAT%2C0611%2CP014
http://arxiv.org/abs/hep-th/0603157
http://jhep.sissa.it/stdsearch?paper=11%282007%29019
http://jhep.sissa.it/stdsearch?paper=11%282007%29019
http://arxiv.org/abs/0708.0672
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB661%2C19
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB661%2C19
http://arxiv.org/abs/hep-th/0404092
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB688%2C101
http://arxiv.org/abs/hep-ph/0403192
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C91%2C251602
http://arxiv.org/abs/hep-th/0309040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C085001
http://arxiv.org/abs/hep-th/0505205
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C085010
http://arxiv.org/abs/hep-th/0610248
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C105011
http://arxiv.org/abs/hep-th/0612309
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB636%2C99
http://arxiv.org/abs/hep-th/0204051
http://jhep.sissa.it/stdsearch?paper=06%282002%29007
http://arxiv.org/abs/hep-th/0204226


J
H
E
P
0
8
(
2
0
0
8
)
1
0
1

[25] R. Roiban, A. Tirziu and A.A. Tseytlin, Two-loop world-sheet corrections in AdS5 × S5

superstring, JHEP 07 (2007) 056 [arXiv:0704.3638].

[26] R. Roiban and A.A. Tseytlin, Strong-coupling expansion of cusp anomaly from quantum

superstring, JHEP 11 (2007) 016 [arXiv:0709.0681].

[27] A.V. Kotikov and L.N. Lipatov, On the highest transcendentality in N = 4 SUSY, Nucl.

Phys. B 769 (2007) 217 [hep-th/0611204].

[28] M.K. Benna, S. Benvenuti, I.R. Klebanov and A. Scardicchio, A test of the AdS/CFT

correspondence using high-spin operators, Phys. Rev. Lett. 98 (2007) 131603

[hep-th/0611135].

[29] L.F. Alday, G. Arutyunov, M.K. Benna, B. Eden and I.R. Klebanov, On the strong coupling

scaling dimension of high spin operators, JHEP 04 (2007) 082 [hep-th/0702028].

[30] I. Kostov, D. Serban and D. Volin, Strong coupling limit of Bethe ansatz equations, Nucl.

Phys. B 789 (2008) 413 [hep-th/0703031].

[31] M. Beccaria, G.F. De Angelis and V. Forini, The scaling function at strong coupling from the

quantum string Bethe equations, JHEP 04 (2007) 066 [hep-th/0703131].

[32] P.Y. Casteill and C. Kristjansen, The strong coupling limit of the scaling function from the

quantum string Bethe ansatz, Nucl. Phys. B 785 (2007) 1 [arXiv:0705.0890].

[33] A.V. Belitsky, Strong coupling expansion of Baxter equation in N = 4 SYM, Phys. Lett. B

659 (2008) 732 [arXiv:0710.2294].

[34] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from

N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021].

[35] D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095

[hep-th/0604135].

[36] J.M. Maldacena and I. Swanson, Connecting giant magnons to the pp-wave: an interpolating

limit of AdS5 × S5, Phys. Rev. D 76 (2007) 026002 [hep-th/0612079].

[37] B. Basso, G.P. Korchemsky and J. Kotanski, Cusp anomalous dimension in maximally

supersymmetric Yang-Mills theory at strong coupling, Phys. Rev. Lett. 100 (2008) 091601

[arXiv:0708.3933].

[38] B. Eden, The BES equation and its strong coupling limit, unpublished, talk at the 12th

Claude Itzykson Meeting: “Integrability in Gauge and String Theory”, 18–22 June 2007,

Paris, France, online at http://www-spht.cea.fr/Meetings/Rencitz2007/eden.pdf.

[39] N. Dorey, D.M. Hofman and J.M. Maldacena, On the singularities of the magnon S-matrix,

Phys. Rev. D 76 (2007) 025011 [hep-th/0703104].

[40] A. Rej, M. Staudacher and S. Zieme, Nesting and dressing, J. Stat. Mech. (2007) P08006

[hep-th/0702151].

[41] K. Sakai and Y. Satoh, Origin of dressing phase in N = 4 super Yang-Mills, Phys. Lett. B

661 (2008) 216 [hep-th/0703177].

[42] L. Freyhult, A. Rej and M. Staudacher, A generalized scaling function for AdS/CFT,

arXiv:0712.2743.

[43] R. Roiban and A.A. Tseytlin, Spinning superstrings at two loops: strong-coupling corrections

to dimensions of large-twist SYM operators, Phys. Rev. D 77 (2008) 066006

[arXiv:0712.2479].

– 26 –

http://jhep.sissa.it/stdsearch?paper=07%282007%29056
http://arxiv.org/abs/0704.3638
http://jhep.sissa.it/stdsearch?paper=11%282007%29016
http://arxiv.org/abs/0709.0681
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB769%2C217
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB769%2C217
http://arxiv.org/abs/hep-th/0611204
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C98%2C131603
http://arxiv.org/abs/hep-th/0611135
http://jhep.sissa.it/stdsearch?paper=04%282007%29082
http://arxiv.org/abs/hep-th/0702028
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB789%2C413
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB789%2C413
http://arxiv.org/abs/hep-th/0703031
http://jhep.sissa.it/stdsearch?paper=04%282007%29066
http://arxiv.org/abs/hep-th/0703131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB785%2C1
http://arxiv.org/abs/0705.0890
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB659%2C732
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB659%2C732
http://arxiv.org/abs/0710.2294
http://jhep.sissa.it/stdsearch?paper=04%282002%29013
http://arxiv.org/abs/hep-th/0202021
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA39%2C13095
http://arxiv.org/abs/hep-th/0604135
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C026002
http://arxiv.org/abs/hep-th/0612079
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C100%2C091601
http://arxiv.org/abs/0708.3933
http://www-spht.cea.fr/Meetings/Rencitz2007/eden.pdf
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C025011
http://arxiv.org/abs/hep-th/0703104
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=hep-th/0702151
http://arxiv.org/abs/hep-th/0702151
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB661%2C216
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB661%2C216
http://arxiv.org/abs/hep-th/0703177
http://arxiv.org/abs/0712.2743
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD77%2C066006
http://arxiv.org/abs/0712.2479

